lunes, 15 de noviembre de 2010

discos ópticos

TIPOS DE DISCOS ÓPTICOS
CD-ROM
Estos discos se basan en la misma tecnología que se utiliza en los CDs de audio, y fue la primera que se desarrollo. Este medio de almacenamiento tiene la desventaja de que no es posible reescribir en ellos, esto lo hace un medio ideal para distribuir software. Estos discos pueden producirse en masa, a muy bajo costo y con una maquinaria totalmente automatizada.

Los CD-ROMs se elaboran utilizando un láser de alto poder para formar agujeros en un disco maestro, luego se hace un molde que se usa para imprimir copias en discos plásticos. Luego se aplica en la superficie una delgada capa de aluminio, seguida de otra de plástico transparente para protección.

Los CD-ROMs se leen mediante un detector que mide la energía reflejada de la superficie al apuntar a esta un láser de bajo poder. Los agujeros, que se denominan huecos (pits), y las áreas sin laserizar entre estos, que se denominan zonas planas (lands), producen una diferente reflectividad del haz de láser, lo que hace posible distinguir entre ambos y recibir dos estados posibles: 0 y 1. Pero no se indica un 0 o un 1 con un land o un pit, sino que un pit indica el cambio de estado, osea de 0 a 1 o de a 1 a 0, y segun la cantidad de lands que haya, el estado se mantiene estable, osea mientras no se cambie de estado se mantiene una zona de lands. De esta manera, se trata de realizar la minima cantidad de huecos(pits) posibles en el disco, y así poder escribir más rápidamente.
Puede estimarse entre 10 y 15 años la permanencia de la información en un CD ROM común, dado que la superficie de aluminio que contiene la información se oxida muy lentamente en ese lapso, salvo que sea sometida a una protección anti-óxido especial, o sea de oro

Los CD-Roms están constituidos por una pista en espiral que presenta el mismo número de bits por centímetro en todos sus tramos (densidad lineal constante),para aprovechar mejor el medio de almacenamiento, y no desperdiciar espacio como sucede en los discos magnéticos. Es por esto que en la lectura y grabación de un CD, a medida que el haz láser se aleja del centro del disco, la velocidad debe disminuir, ya que en el centro el espiral es de menos longitud que en los bordes(ver figura 2). Alternando las velocidades se logra que la cantidad de bits leídos por segundo sea constante en cualquier tramo, sea en el centro o en los bordes. SI esta velocidad sería constante, se leerían menos bits por segundo si la zona esta más cerca del centro, y más si esta más cerca de los bordes. Todo esto significa que un CD gira a una velocidad angular variable.
Para poder lograr que los CDs tengan igual densidad en cualquier tramo de la espiral, en la grabación , el haz láser emitido por la cabeza( que se mueve en línea recta radial desde el centro al borde del plato) genera la espiral a velocidad lineal constante(CLV), esto significa que la cantidad de bits grabados por segundos será constante.
Pero para poder lograr esto, y mantener una densidad lineal constante y la pista en espiral, será necesario que el CD gire a una velocidad angular variable(explicado anteriormente). Por lo tanto, por girar un CD a una velocidad angular variable, y ser escrito a velocidad linear constante, se escriben y leen la misma cantidad de bits por segundo y por centímetro, cualquiera sea la posición del mismo. Mientras que cada vuelta de la espiral contendrá más o menos bits según si este más cerca del centro o del borde.

Uno de los problemas del CD-ROM es que la impresión de discos de aluminio con cubierta plástica no es muy precisa, por lo cual la información digital contiene, por lo general, muchos errores. Existen dos formas para corregir estos errores:
  1. La cabeza lectora de la unidad contiene un espejo de precisión manejado por un mecanismo que se utiliza para encontrar errores en la superficie del disco.
  2. Los datos se graban utilizando un algoritmo denominado 'código de corrección de errores de Reed Solomon'. Este es similar al algoritmo de Hamming, pero al utilizar mas bits de paridad, puede corregir mayor cantidad de errores.

Un tipo de CD-ROM de 60 min de duración presenta la espiral constituida por 270000 marcos conteniendo cada uno 2048 bytes (2 K) para datos. En total se pueden almacenar: 527 Mb. La espiral presenta unas 16000 vueltas por pulgada radial(t.p.i). Se debe tener en cuenta que en el espesor de un cabello entran 50 vueltas.
Antes de grabar el disco "maestro",un programa fracciona cada archivo a grabar en marcos de 2048 bytes de datos, y les agrega, conforme a los campos de un marco.:
  1. unos y ceros indicadores de comienzo de marco , que sirven para sincronismo con la lectora de CD.
  2. una secuencia de bits que irá en la cabecera de cada marco para poder localizarlo.
Para poder localizar un marco dentro del CD , este se identifica por una dirección formada por 3 variables. Teniendo en cuenta el CD de 60 minutos, las primeras dos variables de la dirección son los minutos y los segundos horarios, los cuales obviamente varían desde 0 hasta el 59. El comienzo del espiral, o sea el centro del CD, tiene la dirección 00:00, este va progresando según va creciendo el espiral, hasta llegar a la dirección 59:59. Pero estas direcciones no son suficientes para localizar cada marco, de ahi viene la utilidad de la tercer variable. Esta variable, indica el numero de marco, teniendo en cuenta los minutos y segundos, y sus valores pueden ser desde el 0 hasta el 74. Osea, que por cada segundo , hay 75 marcos. De esta manera hay 60 valores posibles para los minutos y los segundos, y 75 para cada marco, hay 270 000 direcciones posibles, por lo cual existe una dirección para cada marco.
Teniendo en cuenta esto, podemos deducir, que por ejemplo el marco 155, tendrá la dirección 0:2 4. Esto se deduce ya que sí por c/seg existen 75 marcos, si la dirección es 2 seg, esta pertenece al marco 150, entonces para direccionar el marco 155, el marco es el numero 4.

Si bien los CD-ROM son los CD más usados para almacenar programas y datos, las unidades lectoras de CD actuales también permiten leer información digital de otros tipos de CD basados en la misma tecnología, con vistas a aplicaciones en multimedia.

TIPOS DE CD

-Unidad de CD-Regrabable (CD-RW): es similar a una CD-Grabable, pero le permite cambiar los datos que registra en un disco. Un disco Cd Regrabable almacena la misma cantidad de datos que un disco CD-Grabable.

-CD-DA (Digital Audio): es el conocido CD que escuchamos en un reproductor de CD para audio. Podemos escuchar la música que contiene mientras trabajamos con una PC, o bien mezclarla en usos multimedia.

-CD-I: son las iniciales de disco compacto interactivo. De tecnología semejante al CD-ROM, puede combinar datos, audio y video, conforme a un estándar multimedia propuesto por Phillips y Sony en 1986. Este también define métodos para codificar y decodificar datos comprimidos, y para visualizarlos. Almacena 72 minutos de audio digital estéreo ó 19 horas de conversación de calidad en mono, ó de 6000 a 1500 imágenes de video que pueden buscarse interactivamente y mezclarse. Para utilizarse el mismo, se requiere de una plaqueta especial.

-CD-ROM XA : es un estándar para sonido e imagen propuesto por Phillips, Sony y Microsoft, extensión de las estructuras de un CD-ROM, que especifica la grabación comprimida de sonido en un CD-ROM por el sistema ADPCM, también empleado en CD-I. Esto hace que un CD-ROM XA sea un puente entre el CD-ROM y el CD-I.

-DVI: es un tipo de CD ROM que integra video, televisión, gráficos con animación, audio multicanal y textos. Necesita plaquetas adicionales. Debido a una técnica de compresión de datos, éstos ocupan 120 veces menos lugar, permitiendo ver una hora de video de 30 imágenes por segundo. A esta velocidad, dado que una imagen de TV ocupa 600 KB, para ver un segundo se requieren 600 KB x 30 = 18 MB. De no existir compresión, los 600 MB de un CD ROM sólo permiten unos 600/18 » 30 seg. de visión. Los reproductores de CD actuales pueden leer CD-ROM, CD-R, CD-ROM XA, Photo CD, Video-CD, CD-I, CD-plus, y CD-DA.

WORM

Los WORMs (Write Once Read Many) son discos òpticos en los que, como el nombre lo indica, se puede escribir una sola vez, y acceder a los datos tantas veces como se quiera. Estos aparecieron ya que este dispositivo permite al usuario escribir el mismo en el disco. Sin embargo, una vez que se ha laserizado un hueco en la superficie, este ya no puede borrarse. Los discos que utilizan la tecnología Worm más conocidos en el mercado son los CD-R (Compact Disc Recordable), llamados anteriormente CD-WO(Write Once).

El proceso de grabación se realiza de la siguiente manera: el CD contiene una espiral, parcialmente pregrabada de fabrica que contiene las direcciones de los marcos, que sirve de guía para el láser. Este espiral posee una capa orgánica(un pigmento) translúcida que cuando el haz incide en una posición, esta se calienta decolorando el pigmento. Encima de esta capa se encuentra un capa de oro que sirve para reflejar el haz láser en cada lectura.
En la lectura, la capa orgánica deja pasar el haz láser hacia la capa de oro, o sea la capa reflectora, reflejandose de forma distinta según el haz haya atravesado un punto decolorado o no, simulando de esta manera en la lectura pits para las zonas decoloradas, y lands para las zonas donde no incidió el láser. Esto sucede ya que las zonas decoloradas producen una reflexion similar a la de un pit, y lo mismo con la de una zona sin decolorar con un land. Es por esto que CD-R ya grabado se lee como un CD-ROM .

Un CD-R no es necesariamente grabado en una sola sesión, se puede grabar en varios momentos como archivos que se quiere incorporar, hasta llegar a los 650 Mb. Es por esto que un CD-R se debe grabar con la siguiente estructura para poder contener múltiples sesiones:
Los primeros 4 mm de ancho radial de una espiral de un CD-R o de un CD-ROM constituyen el "lead in", que antecede a la zona de datos. Esta es de unos 29 mm de ancho, y le sigue el "lead out" de 1 mm.
En un CD-R, el "lead-in" es precedido por dos áreas necesarias para alinear el haz láser a fin de poder grabar lo que sigue. Cada sesión de grabado de la espiral debe comenzar con la escritura de un "lead in", y terminar con la de un "lead out". A su vez, cada "lead in" debe contener la tabla de contenidos ("Table of contents" TOC), índice de los datos grabados en la sesión correspondiente.
Debe mencionarse que un CD-R grabado en "multisesiones" debe ser leído por un lector de CD-ROM apropiado. De no serlo, sólo leerá la primer sesión.

Los sistemas operativos de una PC utilizan para la lectura de un CD-ROM el formato lógico HSG/ISO 9660. Este es un estandar de una organización interna de los CD –ROM establecida en 1985 por la empresa High Sierra Group, utilizado para establecer normas de compatibilidad entre los CDs.
Uno de los usos del CD-R que no se mencionó es el del Photo Cd. Este es un estándar elaborado en 1990 por Phillips y Eastman Kodak que especifica el procedimiento para convertir fotografías de 35 mm en señales digitales para ser grabadas en un CD-R en una o varias sesiones. La grabación se realiza durante el revelado de la película. Así se guardan cientos de fotos color en un CD-R.

DVD

Un DVD tiene 24 bits, una velocidad de muestreo de 48000 Hz y un rango dinámico de 144 dB. Se dividen en dos categorías: los de capa simple y los de doble capa.
Los DVD de capa simple puede guardar hasta 4,7 gigabytes según los fabricantes en base decimal, y aproximadamente 4,38 gigabytes reales en base binaria, alrededor de siete veces más que un CD estándar. Emplea un láser de lectura con una longitud de onda de 650 nm (en el caso de los CD, es de 780 nm) y una apertura numérica de 0,6 (frente a los 0,45 del CD), la resolución de lectura se incrementa en un factor de 1,65. Esto es aplicable en dos dimensiones, así que la densidad de datos física real se incrementa en un factor de 3,3.
El DVD usa un método de codificación más eficiente en la capa física: los sistemas de detección y corrección de errores utilizados en el CD, como la comprobación de redundancia cíclica CRC, la codificación Reed Solomon - Product Code, así como la codificación de línea EFM Plus. Como resultado, el formato DVD es un 47% más eficiente que el CD-ROM, que usa una tercera capa de corrección de errores.
A diferencia de los discos compactos, donde el sonido se guarda de manera fundamentalmente distinta que los datos, un DVD correctamente creado siempre contendrá datos siguiendo los sistemas de archivos UDF e ISO 9660.
El disco puede tener una o dos caras, y una o dos capas de datos por cada cara; el número de caras y capas determina la capacidad del disco. Los formatos de dos caras apenas se utilizan.

Tipos de DVD

Los DVD se pueden clasificar:
  • Según su contenido:
    • DVD-Video: Películas (vídeo y audio).
    • DVD-Audio: Audio de alta fidelidad .
    • DVD-Data: Todo tipo de datos.
  • Según su capacidad de regrabado:
    • DVD-ROM: Sólo lectura, manufacturado con prensa.
    • DVD-R y DVD+R: Grabable una sola vez. La diferencia entre los tipos +R y -R radica en la forma de grabación y de codificación de la información. En los +R los agujeros son 1 lógicos mientras que en los –R los agujeros son 0 lógicos.
    • DVD-RW y DVD+RW: Regrabable.
    • DVD-RAM: Regrabable de acceso aleatorio. Lleva a cabo una comprobación de la integridad de los datos siempre activa tras completar la escritura.
    • DVD+R DL: Grabable una sola vez de doble capa
    • El DVD-ROM almacena desde 4,7 GB hasta 17 GB.
  • Según su número de capas o caras:
    • DVD-5: una cara, capa simple; 4,7 GB o 4,38 GiB - Discos DVD±R/RW.
    • DVD-9: una cara, capa doble; 8,5 GB o 7,92 GiB - Discos DVD+R DL. La grabación de doble capa permite a los discos DVD-R y los DVD+RW almacenar significativamente más datos, hasta 8,5 GB por disco, comparado con los 4,7 GB que permiten los discos de una capa. Los DVD-R DL (dual layer) fueron desarrollados para DVD Forum por Pioneer Corporation. DVD+R DL fue desarrollado para el DVD+R Alliance por Philips y Mitsubishi Kagaku Media. Un disco de doble capa difiere de un DVD convencional en que emplea una segunda capa física ubicada en el interior del disco. Una unidad lectora con capacidad de doble capa accede a la segunda capa proyectando el láser a través de la primera capa semitransparente. El mecanismo de cambio de capa en algunos DVD puede conllevar una pausa de hasta un par de segundos. Los discos grabables soportan esta tecnología manteniendo compatibilidad con algunos reproductores de DVD y unidades DVD-ROM. Muchos grabadores de DVD soportan la tecnología de doble capa, y su precio es comparable con las unidades de una capa, aunque el medio continúa siendo considerablemente más caro.
    • DVD-10: dos caras, capa simple en ambas; 9,4 GB o 8,75 GiB - Discos DVD±R/RW.
    • DVD-14: dos caras, capa doble en una, capa simple en la otra; 13,3 GB o 12,3 GiB - Raramente utilizado.
    • DVD-18: dos caras, capa doble en ambas; 17,1 GB o 15,9 GiB - Discos DVD+R.
BLUE RAY
Blu-ray, Rayo azul o Rayazul es un formato de disco óptico de nueva generación de 12 cm de diámetro para vídeo de alta definición y almacenamiento de datos de alta densidad.

El uso del láser azul para escritura y lectura permite almacenar más cantidad de información por área que los discos DVD, debido a que el láser azul tiene una menor longitud de onda que los láseres usados para almacenar en discos DVD.
Su capacidad de almacenamiento llega a 50 gigabytes a doble capa, y a 25 GB a una capa. El Blu-ray de 400 GB a 16 capas ya fue patentado y se espera que salga al mercado en el 2010, así como se tiene pensado patentar un Blu-Ray de 1 terabyte para 2011 ó 2012.

Funcionamiento
El disco Blu-ray hace uso de un rayo láser de color azul con una longitud de onda de 405 nanómetros, a diferencia del láser rojo utilizado en lectores de DVD, éste con una longitud de onda de 650 nanómetros.
Esto, junto con otros avances tecnológicos, permite almacenar sustancialmente más información que el DVD en un disco de las mismas dimensiones y aspecto externo.

Capacidad
Una capa de disco Blu-ray puede contener alrededor de 25 GB o cerca de 6 horas de vídeo de alta definición más audio; está en el mercado el disco de doble capa, que puede contener aproximadamente 50 GB. La velocidad de transferencia de datos es de 36 Mbit/s, pero ya están en desarrollo prototipos a velocidad de transferencia 2x (el doble, 72 Mbit por segundo).
Ya está disponible el BD-RE (formato reescribible) estándar, así como el formato BD-R (grabable).


Discos Magneto-Ópticos

Un disco magneto-óptico es un tipo de disco óptico capaz de escribir y reescribir los datos sobre sí. Al igual que un CD-RW, puede ser utilizado tanto para almacenar datos informáticos como pistas de audio. La grabación magneto-óptica es un sistema combinado que graba la información de forma magnética bajo la incidencia de un rayo láser, y la reproduce por medios ópticos.

No es posible alterar el contenido de los discos magneto-ópticos por medios únicamente magnéticos, lo que los hace resistentes a este tipo de campos, a diferencia de los disquetes.

Las unidades de grabación de discos magneto-ópticos verifican la información después de escribirla, del mismo modo que las disqueteras, reintentando la operación en caso de falla o informando al sistema operativo si no puede efectuarse. Esto provoca una demora en la escritura tres veces superior a la lectura, pero hace que los discos sean sumamente seguros, a diferencia de los CD-R o DVD-R en los que los datos son escritos sin ninguna verificación.
Los discos de almacenamiento magneto-óptico suelen ser reconocidos por el sistema operativo como discos duros, ya que no requieren de un sistema de ficheros especial y pueden ser formateados en FAT, HPFS, NTFS, etc.
Actualmente su uso principal es como sistema de copia de seguridad de rápida disponibilidad y como unidad NAS para almacenar datos que suelen cambiar poco y donde mayoritariamente se añaden nuevos ficheros, como una base de datos documental o las digitalizaciones de catálogos, libros, periódicos y documentos.



El disco magneto-óptico consta de una capa ferromagnética cubierta por una de plástico, y nunca hay contacto físico con él. Los datos se graban en una aleación metálica que se conoce como recubrimiento de cambio de fase.

GRABACIÓN

Una muy pequeña porción de la superficie del disco es calentada con un láser mientras la zona se encuentra bajo la influencia de un campo magnético. Cuando ese punto del recubrimiento de cambio de fase alcanza una temperatura crítica conocida como de Curie (cerca de 180 °C) se modifica su estado de cristalización y la estructura del material se torna temporalmente "grabable" dentro de él. Aprovechando el cambio en el estado de cristalización, el flujo magnético presente en la región reorienta los dominios magnéticos dentro de esta zona temporalmente vulnerable de la aleación metálica. Este ordenamiento es realizado en direcciones opuestas, en función de la información binaria, la cual de este modo queda almacenada permanentemente.
Al salir de la zona de grabación como producto de la rotación del disco, el material se enfría rápidamente, y el magnetismo inducido que permanece en ese punto produce que no se recristalice adecuadamente, por lo que no vuelve a su estado original, cambiando así su reflectividad.

BORRADO 

Si no hay presente ningún flujo magnético intenso cuando el material alcanza la temperatura de Curie, su estructura cristalina se relaja y normaliza, produciendo el borrado de la información existente en ese punto. 

 LECTURA

Durante la lectura, el láser disminuye su potencia y se posiciona sobre el disco que, según el estado magnético de cada punto de la superficie, refleja la luz de forma diferente debido al efecto Kerr de birrefringencia. El rayo reflejado es detectado por un sensor de forma similar a la utilizada en los lectores de discos compactos.

martes, 26 de octubre de 2010